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I'want to ask a question. For image classification, if data preprocessing and feature engineering are done
classification algorithm?
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Hi Yizhi, the choice of classification algorithm does matter a lot. And the impact should be dominant.
Besides, current transformer-based CNN should outperform typical CNN.etc
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Digital twin is a concept that creates a model of a physical asset for predictive
maintenance. This model will continually adapt to changes in the environment or
operation using real-time sensory data and can forecast the future of the corresponding
physical assets

Think (Computation)

[dware — Computers, Power, etc Software - C Vision,

z 3 E 3
* Sometimes there’s technically a unique best

. Featureencodings(cf. A B C

7

3 ¢
T 5

hyperplane, but just because of noise

real-life features often correlated % (»1 e 1w21)

rloo

‘5 - (v 12
A 2o
L oo

L —
2

31,

SN Adrg s
PP TEe—

e A GER I Esern
e

B

PSR

2

g g v
vmnounan] o

~

K 4. RSN




2. What is the end goal of an agent?

Agents are software programs that make intelligent decisions. They are basically
reinforcement learners. The ultimate goal of proxy is to maximize the expectation of
this long-term return for each state.

3. What are the main differences between supervised learning and RL?
Supervised learning: provide data, predict tags. For example, predict the pictures of
animals, cats and dogs, and predict the label as cat or dog.

RL: Compared with supervised learning, reinforcement learning has lower cost but
higher accuracy. It uses the data with and without class labels to generate appropriate
classification functions. It uses unlabeled data, but reinforcement learning algorithm
to learn whether closer to the target, I understand as incentive and penalty function.
Similar to life, girlfriends constantly adjust straight boyfriend into a warm man.

4. What are the benefits of combining deep learning and RL?

In traditional reinforcement learning, when the state and action space are discrete and
the dimension is not high, q-table can be used to store the Q value of each state action
pair. However, the more complex task which is closer to the actual situation often has
a large state space and continuous action space. In this case, using g-table is not
realistic. At the same time, the realization of end-to-end control is also required to be
able to process high-dimensional data input, such as image, sound and so on. Deep
learning can just cope with high-dimensional input. If the two can be combined, the
agent will have the ability of understanding deep learning and decision-making ability
of reinforcement learning at the same time.
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’0’0 Sclentific green color caused by early picking. Mildewed lemons are not edible; otherwise,

Q.:. Publishing 1SN Online: 2327-7203 they will damage health and induce diseases such as cancer [4] []. In addition,
ISSN Print: 2327-7211

the green lemon tastes sour, has less fructose, the organic unsaturated acid con-
tent is high, should not be eaten raw. However, due to the high content of or-
ganic unsaturated acid, green lemon can achieve beauty. Compared with the
mature yellow lemon, green lemon has a special value (6] (7). Therefore, effec-
tively and accurately identifying the storage time for too long and early picking
of lemon is important practical significance (8).

On Lemon Defect Recognition with Visual
Feature Extraction and Transfers Learning

1.2. Related Research and Problems in the Past
1.2.1. Related Research
Fruit and crop epidermis recognition s generally divided into three main re-
search stages: traditional digital image processing, CNN, neural network, and
feature processing.

Because of fast detection speed characteristics, a large amount of information,
and no damage to products, machine vision technology is mostly used in fruit
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Abstract

Applying machine learning to lemon defect recognition can improve the effi-
ciency of lemon quality detection. This paper proposes a deep learning-based
classification method with visual feature extraction and transier learning to
recognize defect lemons (i, green and mold defects). First, the data en-
hancement and brightness compensation techniques are used for data pre-
possessing. The visual feature extraction is used to quantify the defects and
determine the feature variables as the bandit basis for classification. Then we
construct a convolutional neural network with an embedded Visual Geome-
try Group 16 based (VGG16-based) network using transfer learning. The pro-
posed model is compared with many benchmark models such as K-Nearest
Neighbor (KNN) and Support Vector Machine (SVM). Results show that the
proposed model achieves the highest accuracy (95.44%) in the testing data
set. The research provides a new solution for lemon defect recognition.

Keywords

Machine Learning, Visual Feature Extraction, Convolutional Neural
Networks, Transfer Learning

1. Introduction
1.1. Research Background

In recent years, with the development of agricultural planting technology, the
control technology of lemon scab, skirt rot, and pest damage often encountered
by lemon has been greatly improved (1] (2] [3]. Through the breeding and utili-
zation of disease-resistant varieties and cultivating disease-free scedlings, the
pests and discases encountered in lemon planting are also greatly reduced. The
main problem in lemon sales is the mildew caused by excessive storage and the

surface detection. The surface optical image is obtained using the optical cha-
racteristics of light reflection, projection, and diffuse projection. After being in-
put into the computer, the image is processed with segmentation, noise removal,
extraction features, data compression, coding, etc. [9] For example, using deep
learning and SVM to identify leaf diseases [10]; using convolution neural net-
work to identify many plant leaf diseases [11] [12]; using deep convolution
AlexNet network model to divide tomato diseases into nine kinds [13]. using
I neural network to tea (14).

Moreover, for machine learning, with the increase of the scale of the learning
model, the parameters that the model needs to be trained gradually increase.
Since the massive data needed for training a model with many parameters is dif-
ficult to obtain and large computational resources require training from scratch,
transfer learning can avoid these two problems, and the knowledge training
model of transfer learning has proved to be an effective method [15]. At present,
transfer learning has been used in many fields, including but not limited to text
classification, image classification, artificial intelligence planning, and so on [16].
For image classification, in agriculture, some classify and identify agricultural
products through image classification [17], some identify crop diseases through
transfer learning, and some identify the state of mature fruit ears through trans-
fer learning [18] [19] [20).

1.2.2. Existing Problems

For machine vision technology, however, most of the research using machine vi-
sion at home and abroad is only under static conditions, limiting the fruit detec-
tion rolling in the actual production line. Moreover, the misjudgment of fruit
infarction and calyx is not effectively solved. Therefore, machine vision is diffi-
cult to be used in actual production. Moreover, for transfer learning, it has not
been studied in lemon defect identification.
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In the winter vacation of 2021, I carried out the online scientific research project of the holiday, and I gota |
ot of harvest and a lot of emotion! After a month and a half of learning, I learned a lot of complex and intere
sting knowledge, such as deep learning and so on. This enables me to understand not only the vastness of th
e ocean of knowledge, but also the vastness of the world. As a little Bai who has hardly been in touch with s
cientific research projects, I feel the charm of scientific research and the preciseness of scientific research. S

ince then, I have a strong admiration for scientific researchers. In this project, teachers always maintain a ser
ious and responsible attitude, in the Spring Festival still insist on class, very moved, thank you!!!
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How time flies, imperceptibly, this study is over, but we have a long way to go; Through this study, I learned
the knowledge of machine learning, which will be of great help to my future study in this field. I used to reject
this knowledge, but after this study, I changed my attitude and developed some interest in this knowledge. In
this course, all the teachers are very responsible; It's a great honor to participate in this project. Although our
team did not perform well in the end, I still want to thank all the teachers and students.
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I personally think this project is very successful on the whole. After all, students come from different
universities, different majors, learning steps are not the same, in machine learning and data science attainments
are also deep, so it is very difficult to consider the completion of the project. Some suggestions for
improvement are provided below:

It is mainly the advance acquisition of classroom content documents, because the language is not proficient,
the efficiency of a class is very dependent on pre-class preparation, if you can get the outline of this course
early before class, there should be better results. Secondly, I think teachers and students can interact more, not




just listen and understand. Again, | think after class, students' notes should also be included in the scoring
criteria.
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Time flies. In a twinkling of an eye, the nearly 50-day online course has ended. It’s very emotional to recall
the confusion when 1 first attended the class and the little satisfaction when I finished the project. In the
process of learning, I have gained a lot. There are too many advantages of the project course, so 1 will not
elaborate on them one by one. Of course, I will continue to learn a lot in the future. Here are some of my
personal suggestions. It is hoped that the saving time of each teaching recording screen can be delayed or sent
to students directly in the form of files. Sometimes when you learn the following content and want to review
the previous content, the recording screen has expired. I hope that every time Professor’s recording screen is
attached with Chinese subtitles, so that it is easier to understand.
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In this project learning, I deeply understand and use machine learning. Professor vividly introduced the basic
components of machine learning and related cutting-edge research through a large number of examples, which
inspired me a lot. Mr. Mo explained several mature machine learning principles in detail, and introduced how
to use the code and how to adjust the network parameters. Every class has benefited me a lot. I need to spend
a lot of time after class to understand the content and learn how to use it. It would be better if the class had
more code and showed the results of the operation in different situations.
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